Building mean field ODE models using the generalized linear chain trick & Markov chain theory
نویسندگان
چکیده
The well-known Linear Chain Trick (LCT) allows modelers to derive mean field ODEs that assume gamma (Erlang) distributed passage times, by transitioning individuals sequentially through a chain of sub-states. time spent in these states is the sum $k$ exponentially random variables, and thus distributed. Generalized (GLCT) extends this technique much broader phase-type family distributions, which includes exponential, Erlang, hypoexponential, Coxian distributions. Intuitively, distributions are absorption for continuous Markov chains (CTMCs). Here we review CTMCs then illustrate how use GLCT efficiently build ODE models from underlying stochastic model assumptions. We generalize Rosenzweig-MacArthur SEIR show benefits using compute numerical solutions. These results highlight some practical benefits, intuitive nature, first principles.
منابع مشابه
analysis of ruin probability for insurance companies using markov chain
در این پایان نامه نشان داده ایم که چگونه می توان مدل ریسک بیمه ای اسپیرر اندرسون را به کمک زنجیره های مارکوف تعریف کرد. سپس به کمک روش های آنالیز ماتریسی احتمال برشکستگی ، میزان مازاد در هنگام برشکستگی و میزان کسری بودجه در زمان وقوع برشکستگی را محاسبه کرده ایم. هدف ما در این پایان نامه بسیار محاسباتی و کاربردی تر از روش های است که در گذشته برای محاسبه این احتمال ارائه شده است. در ابتدا ما نشا...
15 صفحه اولMean field and fluid approaches to Markov chain analysis
Representing the explicit state space of performance models has inherent difficulties. Just as the state-space explosion effects functional correctness evaluation, so it can also be easily a problem in performance models. In particular, classical Markov chain analysis of any variety requires exploration of the global state space and, even for a simple system, this quickly becomes computationall...
متن کاملMarkov Chain Sampling for Non-linear State Space Models Using Embedded Hidden Markov Models
Abstract. I describe a new Markov chain method for sampling from the distribution of the state sequences in a non-linear state space model, given the observation sequence. This method updates all states in the sequence simultaneously using an embedded Hidden Markov model (HMM). An update begins with the creation of a “pool” of K states at each time, by applying some Markov chain update to the c...
متن کاملMarkov Chain Monte Carlo Simulation in Dynamic Generalized Linear Mixed Models
Dynamic generalized linear mixed models are proposed as a regression tool for nonnormal longitudinal data This framework is an interesting combination of dynamic models by other name state space models and mixed models also known as random e ect models The main feature is that both time and unit speci c parameters are allowed which is especially attractive if a considerable number of units is o...
متن کاملFluctuating Entanglements in Single-Chain Mean-Field Models
We consider four criteria of acceptability for single-chain mean-field entangled polymer models: consistency with a multi-chain level of description, consistency with nonequilibrium thermodynamics, consistency with the stress-optic rule, and self-consistency between Green–Kubo predictions and linear viscoelastic predictions for infinitesimally driven systems. Each of these topics has been consi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biological Dynamics
سال: 2021
ISSN: ['1751-3758', '1751-3766']
DOI: https://doi.org/10.1080/17513758.2021.1912418